Almost Sure Exponential Stability in the Numerical Simulation of Stochastic Differential Equations
نویسنده
چکیده
This paper is mainly concerned with whether the almost sure exponential stability of stochastic differential equations (SDEs) is shared with that of a numerical method. Under the global Lipschitz condition, we first show that the SDE is pth moment exponentially stable (for p ∈ (0, 1)) if and only if the stochastic theta method is pth moment exponentially stable for a sufficiently small step size. We then show that the pth moment exponential stability of the SDE or the stochastic theta method implies the almost sure exponential stability of the SDE or the stochastic theta method, respectively. Hence, our new theory enables us to study the almost sure exponential stability of the SDEs using the stochastic theta method, instead of the method of the Lyapunov functions. That is, we can now carry out careful numerical simulations using the stochastic theta method with a sufficiently small step size ∆t. If the stochastic theta method is pth moment exponentially stable for a sufficiently small p ∈ (0, 1), we can then infer that the underlying SDE is almost surely exponentially stable. Our new theory also enables us to show the ability of the stochastic theta method to reproduce the almost sure exponential stability of the SDEs. In particular, we give positive answers to two open problems, (P1) and (P2) listed in section 1.
منابع مشابه
Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملAlmost sure exponential stability of numerical solutions for stochastic delay differential equations
Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of...
متن کاملAlmost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations
Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama (EM) method fails to...
متن کاملAlmost sure and moment exponential stability of predictor-corrector methods for stochastic differential equations
This paper deals with almost sure and moment exponential stability of a class of predictorcorrector methods applied to the stochastic differential equations of Itô-type. Stability criteria for this type of methods are derived. The methods are shown to maintain almost sure and moment exponential stability for all sufficiently small timesteps under appropriate conditions. A numerical experiment f...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2015